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Electrodynamics of moving media and the Cerenkov 
radiation 

N. D. SEN GUPTA 
Tata Institute of Fundamental Research, Bombay, India 
MS. received 30th October 1967 

Abstract. The object of this paper is to find the equations for the electric and magnetic 
intensities E and H in a homogeneous medium moving with a uniform velocity, 
from Maxwell’s field equations and Minkowski’s material relations. The nature of 
the solution of these equations in general is studied. An alternative approach is 
suggested, to reduce the problem to a mathematically equivalent problem in empty 
space. This is done by introducing linear space-$me transformations similar to the 
Lorentz transformations. As an application, the Cerenkov radiation is studied. By 
suitable transformation, it is reduced to a problem equivalent to antenna radiation. 
The special case of motion with velocity equal to the phase velocity, which has 
unusual consequences, is included in an appendix. 

1. Introduct ion 
In  recent years there has been a revival of interest in the studies of the electromagnetic 

properties of moving media. The  investigations may be broadly classified into two groups. 
The main interest of one group is to regard it as a general problem in the classical theory 
of fields and to find its relation to the theory of relativity, both special and general. The  
object of the other group is mostly connected with practical applications, such as its 
relation to Cerenkov radiation, radiations from high-energy plasma, etc. Our studies 
are confined to the second. By Cerenkov radiation we mean the radiation emitted by charges 
and currents which are space-time functions of the formf(r-vt), where / V I  i,s greater 
than U, the phase velocity of electromagnetic waves in the medium. Usually Cerenkov 
radiation is attributed to radiation due to charges moving with constant velocity in this 
range, i.e.f(r-vt) cc S(r-vt), with / V I  = 0 > U. The  nature of the radiation emitted 
by a particle moving with varying velocity such that v > U has been studied by the author 
(Sen Gupta 1965). In  this range, though the charge current may be made static (or purely 
accelerating in the case of varying velocity) in a suitable Lorentz frame, the characteristic 
properties of Maxwell’s field equations change with respect to space and time. This is 
due to the involved nature of Minkowski’s material equations. The object of this paper is 
to examine critically the appearance of the Cerenkov radiation in relation to the change of 
properties of the field equations in a material medium. Since this change is due to the 
material equation, the radiation is basically a property of the medium. Hence an adequate 
theory of the Cerenkov radiation should be microscopic in nature. Although a satisfactory 
microscopic theory of the electromagnetic properties of a material medium is yet to be 
formulated, nevertheless, a good beginning for a microscopic theory of the Cerenkov 
radiation has been made by Pratap (1967). With these limitations it is still instructive to 
study the macroscopic equations and to examine their consequences. 

With this aim, we have tried to investigate the nature of the field equations in a homo- 
geneous moving medium in general. An attempt to study the Cerenkov radiation by this 
method has been made by Nag and Sayied (1956). Their special interest has limited their 
discussions, and the general character of the equations and the field quantities have not 
been revealed. Most of the authors who have investigated the problem have used vector 
and scalar potentials to describe the field. The  nature of Minkowski’s material equations 
makes the equations for the potential involved to such an extent that they cannot be suitably 
simplified, even with a freedom of choice of gauge. On the other hand, as our procedure 
shows, the field equations directly in terms of E and H are not unwieldy, though by no 
means simple. The  Cerenkov-like radiations in a plasma studied by Majumdar (1960, 1961) 
are distinct from the Cerenkov radiation, as envisaged in this paper. 
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Further, as a continuation of our objective to see the difference between the two cases 
v > U and v < U, we have reduced the problem similar to that in empty space by intro- 
ducing linear space-time transformations which are analogous to the Lorentz transforma- 
tion; for v < U this is the same as the Lorentz transformation with c replaced by U, and for 
v > U with c replaced by U and v replaced by uz/v. With v constant, this reduces in this 
first case to a static one as the convective current diappears. In  the other case the charge 
disappears, and hence it reduces to an antenna problem. This clearly demonstrates the 
radiative property in the latter case. 

I n  the next section the field equations for E and H are obtained by eliminating B and D 
from Maxwell’s equations and Minkowski’s equations. The  nature of their solutions and 
the corresponding Poynting theorem are discussed. Section 3 is devoted to an alternative 
approach, namely the transformation of the field equation to a static one and to that of an 
antenna by suitable linear transformation of space and time. The  Cerenkov radiation is 
studied as an application in $4 .  T h e  paper is supplemented with an appendix in which 
the special case of v = U is discussed; this has the consequence that E and H depend only 
on the current and not on the charge 

2. The field equations 

given by 
Maxwell’s equations for electromagnetic fields in a homogeneous material medium are 

1 2D 
c at V A H - - - - - - = J  (1) 

and 

1 aB 
c at 

V A E+-- = 0 

V . D = P  

V . B = O .  
(3) 

(4) 

For our discussions we take the medium to be non-dispersive. However, most of the 
results obtained may be extended to dispersive media. The  material equations of 
Minkowski for a homogeneous medium moving with uniform velocity v with respect to an 
observer are 

D+pn A Pi: = e(E+/3n A B) 

B-pn A E = p(H-pn A D) 

D(l -epp2) = e(1 -p2)E+,8(ep- 1)(n A H-~pn(n .  E)} 

B(l -epp2) = p(1 -,B2)H-p(ep - l){n A E+ppn(n . H)). 

( 5 )  

(6) 

where n = vjv and p = vjc. Thus 

( 7 )  

(8) 

(7’ )  

(8‘) 

It is to be noted that for the parallel components 

n . D = e(n . E) 

n . B = p(n . H) 

i.e. they are the same as those when the medium is at rest. Hence, excluding the special 
case 1-epP2 = 0, i.e. the phase velocity of the electromagnetic wave in the medium is 
equal to v,  one can find D and B from equations (7) and (8) in terms of E and Hj-. The  case 
of cu = U requires special attention: it is discussed in the appendix. I n  order to write 

t There is a typographical slip in Pauli’s (1921) article in the sign of the last term of the right- 
hand side of equation (8) with coefficient p. This has been reproduced in the English translation, 
and carried over in many other books. 
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Maxwell’s equations in terms of E and H, it is convenient to introduce the notation 

and 

where 

1-4 a - 
V = V+n-- 

v at  (9) 

E = E + n ( n . E )  - - 1  (10) 

R = H + n ( n . H )  - - 1  (11) 

c i 
c i 

increases from 1 to CO as v changes from 0 to U, and 4 is negative when z‘ > U. E and E 
differ only along n and E.  n = [(E, n) ; similarly for H. With this notation it is easy to see 
that equations (1)-(4) can be written in the form 

and 

where 

- E aE 
at 

P alFf: 
at 

V A El--(- = J 

V A E+-(- = 0 

‘5- 1 fj = P+--- (n. J). 
P 

I n  the above equations both E, H and E, appear, which makes further elimination a little 
involved. However, the components of equations (13) and (14) along n remain unchanged; 
they are 

(18) 

n . V A H - - - f n . E ) = n . J .  (19) 

P a  
at 

€ a  
at 

n .  V A E+--(n. H) = 0 

This follows directly from equations (l), (2), (7’) and (8’). From equations (13)-(16) it is 
clear that the components of E, H no longer satisfy the same type of wave equation; hence 
the simultaneous equations cannot be reduced easily to independent equations. By forming 
the scalar product of equations (13) and (14) with n A V and using equations (7’),  (8’) 
and (15)-(19), one can find the wave equations for n.E and n .H as follows: 

where 

p c  a 
( n .  v)P+--(n. J) 

U2 at 
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The  equations for the other components of E and H are obtained from equations (13) 
and (14) by forming the vector product with n A V:  

V(n. V)(n. H) 

-n A ( I  - v - ( n .  a: E)+(n.V)J}] 

n A V(n.H)-J 
c at 

(23) 

(24) 

The above equations may be solved after determining n.H and n.E from equations (21) 
and (22). The  equations (20), (21) and (23), (24) are similar to those in the problems of 
wave-guides where they are simply algebraic equations. There it is because of the special 
nature of the solutions, which are of the form exp [i{k(n . r) - ut}] .  It should be mentioned 
that the Maxwell equations in a rest system may also be separated in this manner, but they 
will introduce unnecessary complications; hence they are redundant owing to the homo- 
geneity of space. But, owing to the motion of the medium, the space is no longer isotropic and 
such a separation of the field equation is imperative here. Since the differential operator on 
the left-hand side of equations (23) and (24) does not contain n A V, the dependence of the 
components of E and H perpendicular to n, on n A r, is determined directly by the 
components along n and (P, J). 

Next, in order to examine the intrinsic effect of ( on the nature of the differential 
operators in equations (22), (23) and (24), we first note that, even excluding the perpen- 
dicular part of the Laplacian in 9, i.e. n A V.n A V in expression (22), the remaining 
parts of the differential operator in the equations for parallel and perpendicular com- 
ponents are different. Obtaining n . 9  from equation (9) and using expression (22), we 
have 

and the operator in equations (23) and (24) is 

In  order to express the operators in the normal form, let us introduce the transformation 

so that 

and 

n . r  
t’ = t + ( f - l ) - ,  r’ = r 

V 

1-4 a 
v at 

n . V + - - - n . V ’  

It may be noted that this transformation is analogous to the Galilean transformation with 
the role of space and time interchanged. They have been studied by the author (Sen 
Gupta 1966) as another limit of the Lorentz transformation. With these variables 

= n A  V ’ . n A  (n.V’)2-  -- 
U~ at ’2 
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and 

We first note that the differential operators are hyperbolic in character whatever the 
value of E .  But the physical properties of the field quantities, for example the evolution 
in time and the propagation in space, associated with equations (20), (21), (23) and (24), 
change conspicuously with change in sign of 6. It is often vaguely mentioned in the 
literature that the field equations change from hyperbolic to elliptic when '$ changes 
in sign from positive to negative, i.e. v increases from ZI < U to v > U. This is not true 
in general, as is evident from above. 

(i) Case v < U, '$ > 1 
In  the primed system the signature of the space-time associated with the 

operators (29) and (30) is the usual one, namely (1, 1, 1, - 1). The only change effected 
in the transition to the original system, by the inverse transformation 

n . r '  
t = t '-( '$-l)-, 

0 
r = r' 

is the introduction of a relative retarded or advanced time, depending on the position along 
the parallel direction. This evidently does not change any physical character of the field 
quantities. 

(ii) Case v > U, '$ < 0 
In the primed system, although the operator (29) is still hyperbolic, the signature of 

the space-time corresponding to the operator (29) is now (1, 1, - 1, 1). This interchanges 
the role of time with the component of space directed along the velocity. Thus the physical 
properties associated with the field are expected to change basically. Further, the transi- 
tion to the original system according to equation (31) is to introduce a relative advanced 
or retarded time, i.e. in an order opposite to the previous case, because '$ - 1 is now negative. 
In  fact, with respect to a moving system the concept of retarded or advanced potentials or 
fields in general becomes relative if a velocity greater than the phase velocity is allowed. 

Kext, the change in sign of '$ does not change the character of the operator (30), i.e. of 
equations (23) and (24) ; but it should be noted that the presence of n . H and n . E on the 
right-hand side of equations (23) and (24) effectively changes the nature of the perpendicular 
components. 

Another interesting aspect of the operators (29) and (30) which may be noted is that, 
with sources which are independent of n A r, the perpendicular part of the Laplacian 
being absent, both operators remain hyperbolic for all values of '$. From equations (20) 
and (21) the only change in the problem is the change in sign of the terms containing the 
current with change in sign of '$. 

Finally, after determining the nature of the differential equations (20), (21) and (23), 
(24), we find that they do not present any further complications for the solution. It is not 
irrelevant to mention that the effect of the medium in the above discussions is only through 
E ,  which depends on the velocity only for material media; '$ = 1 in empty space. 

2.1. The Poynting theorem 
In  the usual manner one can obtain from the field equations (13)-(16) 

&(n A E . n  A E) 

+&(p(n A H . n  A H)+&(n.  E)2++,u(n. H) = - E .  J .  (32) 1 
This can be written in the usual form for the Poynting theorem by substituting for 9 from 
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equation (9) : 

f { & ( n A E . n A E ) + f r p ( n A H . n A H ) )  

I (33)  
1 - f  
P +&(n.E)2+&(n.H)2+--(n.E A H )  = - E . J .  

The common expression for energy, the expression in brackets, is no longer positive 
definite. The  square of the parallel components of the field is the same. But the square 
of the perpendicular components of the field now appears with a factor f ,  which changes 
sign if o > U. Again, the sign of the last term changes owing to the factor 1 -[, which is 
negative for v < U and positive for v > U. Beyond these observations on the difference in 
the nature of the problem in the cases of o < U and v > U, no definite statement may be 
made for equation (33) without a knowledge of the specific nature of E and H. 

In  the investigations of the Cerenkov radiation one is interested in the special cases of 
P, J, and hence one loses sight of some of these general properties of the field satisfying 
Maxwell’s equations and Minkowski’s relations. The  equations (20)-(24) show clearly 
that, even in a system with steady charge current, i.e. aP/at = 0, aJ/at = 0, the field 
produced is not necessarily steady. T h e  time variation enters through the material 
equation and under suitable conditions the system may radiate. 

3. An alternative approach 
I n  the case of a homogeneous medium the study of the electromagnetic field due to 

given charges and currents may be very conveniently reduced to problems which are 
mathematically equivalent to those of empty space. Hence it would show clearly radiative 
and other physical properties of the system. In  order to show this, we start with Maxwell’s 
equation in the system at rest in the medium. Let us introduce 

e = ~ E E ,  h = d p H  
j = dpJ and p = P / ~ E .  

Maxwell’s equations with these variables are 

1 ah 
U at 

V A e + - - = O  

V . e = p  

V . h = 0 .  

(34) 

(35)  

(37) 

(38) 

(39) 
The above equations are exactly in the same form as those in empty space, with c replaced 
by U .  Hence all the invariance properties of Maxwell’s equations in empty space are valid 
mutatis mutandis, with c replaced by U. Thus they are invariant with respect to the linear 
transformation, similar to the Lorentz transformation with velocity v and c replaced by U .  

(i) Case v < U 

The equations (36)-(39) are invariant with respect to the linear transformation: 

n . r ‘ = ( n . r - z . t ) y ,  t y ,  n A r ’ = n A r  (40) 

y ,  ( j ‘ . n )  = y ,  n A j ’ = n A  j (41) 
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where 
/ ,2\ - 1 / 2  

y = + p - ; j  I (43) 

These transformations are exactly the same as the Lorentz transformations, except that c is 
replaced by U. They are meaningful as linear space-time transformations and, as in the 
Lorentz transformations, r . r - u2t2 is invariant. The  invariance property is maintained 
as long as the charge and current are taken as external entities. They have no physical 
significance, but they are merely mathematical aids. The  invariance property is lost as 
soon as the particle equation is introduced. Problems, in which charges and currents are 
of the formf(r-vt), are reduced to the static case by this transformation. Since the static 
case is easy to handle, it is convenient to find e‘ and h’, from which one can obtain E and H 
by the inverse transformations. Now since the transformations are linear, the physical 
nature of the field, for example, radiating or not, are the same in both systems. ,4n obvious 
example is the motion of a charged particle in a homogeneous medium. By this transforma- 
tion the problem is reduced to the analogous case of static charge in empty space as long as 
v < U ,  and hence there cannot be any radiation. 

(ii) Case v > U 
In  this case also one can introduce the transformation 

U 
p’ = ( p  - (n . j)) 7 ,  n . j’ = (n . j - p) 7 ,  n A j‘ = n A j (45) 

and 

(46) 

(47) 

U 
n . e ‘ = n . e ,  n A e ’ =  

n . h ‘ = n , h ,  n A h ‘ =  
U 

U here 

This transformation is obtained from the previous one on replacing U by u2/i.. The  
equations (36)-(39) are also invariant with respect to this transformation. They have no 
direct similarity with the Lorentz transformation. As before, they have no physical 
significance, but they also maintain r.  r - u2t2 invariant. They have been studied by the 
author (Sen Gupta 1966) in a different context. By this transformation, it may be possible 
to reduce a given charge current to some simple form for which the field quantities are 
easy to determine. Finally, one can obtain E and H by the inverse transformation. Again, 
since the transformations are linear the physical nature of the field remains the same. An 
important application of this is the Cerenkov effect, which is treated in the following 
section. 
4. The Eerenkov radiation 

For a particle moving with velocity v > U along the x direction 
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According to equations (44) and (48), the transformed charge currents are 

The  field equations are 
p = 0 ,  j =rz/pJ. 

1 ae vq 

1 ah 
U at 

V A h -  -- =--a( x)a(Y)a(tv) at 

V A e+--  = 0 

V . e = O  
and 

V . h = O .  

In  equations (50)-(54) primes are dropped. Thus the problem reduces to an analogous 
problem of antenna. Since the current is proportional to vs(x>a(y)8(t) ,  the antenna is a 
transient one and it is extended infinitely along the x axis. If one considers the Fourier 
resolution of the current, the strengths for different frequencies are the same and constant. 

We next proceed in exactly the same manner as in an antenna problem. Since p = 0, 
the field may be described by the vector potential a, such that 

1 aa 
h = V A a ,  e = - - -  

z1 St 
and 

The  equation for a is 
V . a = O .  

(55) 

This reduces to a two-dimensional wave equation as 2: does not appear on the right-hand 
side, and we are interested in the solution a -+ 0 as x -+ k CO. Hence 

the solution of which is well known; for the given boundary condition it is 

a=-%-/'[  jj 
2nTTZ/c 0 

s< u(t - t) 
where S = + { (x  - <)2 - ( y  - ~ ) ~ } l ' ~ ,  so that 

__ "4  1 a = -- 
2 X Z / E  ( U 2 P  - x2 - y y  (59) 

for ut > + ( ~ ~ + y ~ ) ~ ' ~ ,  and zero otherwise. Finally, on returning to the original system 
the vector and scalar potentials are given by 

and 
2 

A = n ('1 p 

for u(ot - x) > {(u2 - u2)(x2 +y2)}112, and zero otherwise. Thus we obtain the well-known 
result. Since this case reduces to a problem analogous to that of an antenna, it must 
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radiate. It may be mentioned that the criterion for the radiation, namely the flow of energy 
momentum across a closed surface, remains the same, as a closed surface remains closed 
by the linear transformation for a fixed instant of time. We can also find the expression 
for radiative power per unit frequency interval. For this purpose we start with the Fourier 
resolutions e, and h, of the field intensities; one can easily obtain them directly from the 
field equations (51)-(53) as a/ax = 0. The  surface integral of the corresponding Poynting 
vector taken along x2+y2 = const. is 

$ (e,  A h, .8c) exp{i(w -+ w ’ ) t }  dw dw’ dz .  (62) 

Now, in order to ensure that the surface is a closed one at a fixed instant of time in the 
original system, we must have 

dx+r:dt = 0 (63) 

so that we can replace dx in the expression (62) by - v  dt and perform the integration. 
Thus one can also find the expression for the energy loss per unit time. Since the expres- 
sion is well known we shall not repeat the calculations here. 

Appendix 
In  the case of z! = U, i.e. 1 - E ~ , B ~  = 0, Minkowski’s material relations are no longer 

independent; hence D and B cannot be uniquely determined from them. But the relations 
along the parallel direction, namely equations (7’) and (8’), are still valid. Minkowski’s 
relations only give 

D-$?n A B = EE-,Bn A H (AI) 

and, from equations (7) and (8), 

n A H = c,Bn A (n A E) 
n A E =  -p,BnA(nr\H) 

Thus E and €3 are always orthogonal to each other. From equation (Al) and Maxwell’s 
equations (1) and (2) 

1 2  
c ot 

V A H++ A ( V  A E)- -,(EE-,Bn A H) = J. (-43) 

E and H can be determined from equations (U) and (A3). As before, the equations for the 
parallel and perpendicular components are different. Without going into the details of the 
calculations we give the wave equations of the field intensities. For the parallel com- 
ponents 

n .  v+--- l + ”  ’1 (n.J))  
U at 

9’ (n .H)  = V . n  A J 
where 

2 a (1+ /32)  a2  

U at u2 a t 2  
~ ‘ = n A V . n A V - - ( n . V ) - - - - - - - - .  

Next, for the perpendicular components, 

n A E = n A {V A n(n . H)+$?V(n. E)-  J} (A7) 

n A H = n A  [V(n .H)+nA (V(n.E)-J}]. (-48) 

U at 

U a t  
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There are some important points to be noted in the above equations for E and H. In  the 
first place, the charge p does not appear in the above equations; this is obvious as Maxwell’s 
equations (3) and (4) are not used. Hence p does not contribute to producing the field. 
(3) and (4) may have some role in determining the boundary condition for the field quan- 
tities and also for determining D from equation (3). Next, the equations for the pendicular 
components are linear in space and time derivatives, so that with a knowledge of the 
parallel components they are reduced to quadratures. It is sufficient to know only their 
value at a given region in space-time to determine them uniquely. 
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